
A CAD Suite for High-Performance FPGA Design ∗

Brad Hutchings, Peter Bellows, Joseph Hawkins, Scott Hemmert,
Brent Nelson, Mike Rytting

Department of Electrical and Computer Engineering
Brigham Young University, Provo, UT 84602

hutch@ee.byu.edu

1 Introduction

This paper describes the current status of a suite of CAD
tools designed specifically for use by designers who are
developing high-performance configurable-computing ap-
plications. The basis of this tool suite is JHDL [1], a de-
sign tool originally conceived as a way to experiment with
Run-Time Reconfigured (RTR) designs. However, what
began as a limited experiment to model RTR designs with
Java has evolved into a comprehensive suite of design tools
and verification aids, with these tools being used success-
fully to implement high-performance applications in Auto-
mated Target Recognition (ATR), sonar beamforming, and
general image processing on configurable-computing sys-
tems. In response to user demands (those students develop-
ing configurable-computing applications), JHDL has been
modified and augmented to include:

☞ a graphical debugging tool that allows designers to
simulate, debug and hierarchically navigate their de-
signs. This tool can generate a schematic view an-
notated with simulation or execution data, provide a
waveform view of any desired signals, and allows the
designer to invoke any public methods implemented
by the circuit class (via Java reflection).

☞ a schematic generator that can automatically create a
high-quality schematic view of a JHDL description,

☞ an EDIF 2.0 netlist class that generates output compat-
ible with current Xilinx M1 place and route software,

☞ simulation models and transparent run-time support
for the Annapolis Microsystems WildForce platform

☞ a graphical floorplanner (under development) that will
be used cooperatively with the schematic view to man-
ually floor-plan designs.

∗Effort sponsored by the Defense Advanced Research Projects Agency
(DARPA) under contract number DABT63-96-C-0047. The U.S. Govern-
ment is authorized to reproduce and distribute reprints for Governmental
purposes notwithstanding any copyright annotation thereon.

In addition to these specific design aids, JHDL provides
a unified design environment where a single, user inter-
face can be used for both simulation and execution. This
allows the designer to request either simulation or execu-
tion (or a mixture of the two) using the exact same com-
mands for both. For example, within this unified environ-
ment, commands such as set-breakpoint, examine-variable,
single-step, etc., are the same whether performing simula-
tion or execution. This is a big advantage for designers be-
cause they can learn a single debugging environment that
works for both simulation and execution –in contrast with
current systems where execution and simulation environ-
ments are distinct and very different. Other design views
are unified as well; for example, the schematic view can
display either simulated values or values retrieved from the
FPGA platform during execution using the same view and
interface. Much of the flexibility of this environment is due
to the dual simulation/execution environment supported in
the original version of JHDL [1]; as reported previously,
switching between simulation and execution mode is done
by simply clicking a radio button in the circuit browser.

The remainder of the paper briefly reviews the origins
of JHDL, why JHDL was adopted as a design tool, and
what additional tools and capabilities were added to JHDL
to make it a complete design environment.

2 JHDL as an RTR design tool

The original focus of JHDL was on Run-Time Recon-
figuration (RTR). As originally published in FCCM98, it
made the following contributions.

☞ JHDL used object constructors and destructors to de-
scribe circuit structures that dynamically change over
time.

☞ JHDL provided a dual simulation/execution environ-
ment where a designer could easily switch between ei-
ther software simulation or hardware execution with a
single circuit description (JHDL program).

Report Documentation Page Form Approved
OMB No. 0704-0188

Public reporting burden for the collection of information is estimated to average 1 hour per response, including the time for reviewing instructions, searching existing data sources, gathering and
maintaining the data needed, and completing and reviewing the collection of information. Send comments regarding this burden estimate or any other aspect of this collection of information,
including suggestions for reducing this burden, to Washington Headquarters Services, Directorate for Information Operations and Reports, 1215 Jefferson Davis Highway, Suite 1204, Arlington
VA 22202-4302. Respondents should be aware that notwithstanding any other provision of law, no person shall be subject to a penalty for failing to comply with a collection of information if it
does not display a currently valid OMB control number.

1. REPORT DATE
1999 2. REPORT TYPE

3. DATES COVERED
 00-00-1999 to 00-00-1999

4. TITLE AND SUBTITLE
A CAD Suite for High-Performance FPGA Design

5a. CONTRACT NUMBER

5b. GRANT NUMBER

5c. PROGRAM ELEMENT NUMBER

6. AUTHOR(S) 5d. PROJECT NUMBER

5e. TASK NUMBER

5f. WORK UNIT NUMBER

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES)
Brigham Young University,Department of Electrical and Computer
Engineering,Provo,UT,84602

8. PERFORMING ORGANIZATION
REPORT NUMBER

9. SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES) 10. SPONSOR/MONITOR’S ACRONYM(S)

11. SPONSOR/MONITOR’S REPORT
NUMBER(S)

12. DISTRIBUTION/AVAILABILITY STATEMENT
Approved for public release; distribution unlimited

13. SUPPLEMENTARY NOTES
The original document contains color images.

14. ABSTRACT
see report

15. SUBJECT TERMS

16. SECURITY CLASSIFICATION OF: 17. LIMITATION OF
ABSTRACT

18. NUMBER
OF PAGES

13

19a. NAME OF
RESPONSIBLE PERSON

a. REPORT
unclassified

b. ABSTRACT
unclassified

c. THIS PAGE
unclassified

Standard Form 298 (Rev. 8-98)
Prescribed by ANSI Std Z39-18

☞ JHDL supported simultaneous execution of hardware
and software: those parts of the application that extend
JHDL library classes are executed in hardware while
those parts written using generic Java classes are exe-
cuted on the CPU’s Java virtual machine. This makes
it possible to fully integrate an application GUI with
a hardware description, using a single program to de-
scribe both.

Note that the current version of JHDL continues to sup-
port these features in addition to the new capabilities that
are outlined in this paper.

3 Structural design and FPGAs

In its current state, JHDL is a structural design envi-
ronment. That being said, the first question that enters
most people’s minds at this point is this: in this era of
behavioral synthesis, why are we still interested in struc-
tural design? The answer is that, when working with FP-
GAs, structural design techniques often still result in cir-
cuits that are substantially smaller and faster than those de-
veloped using only behavioral synthesis tools. In addition,
for many applications found in the configurable-computing
arena, structural capture is simply a faster, easier-to-learn
and more effective way to design an application1.

Structural design often improves the performance
of configurable-computing applications because many
FPGA-based applications can benefit from manual
placement of at least some parts of the design. Manual
placement often results in either smaller or faster cir-
cuits or both. Indeed, it is still common to see overall
improvements of about 2-10x (area x speed) when a few
key performance-critical data-path elements are manually
placed.

Structural design is key to manual placement. Effective
manual placement can only be achieved if the overall or-
ganization of the circuit is well understood and this is only
possible if the designer controls (or at least understands)
how the structure of the circuit is generated. For example,
it is very difficult to manually place circuitry that was gen-
erated via purely behavioral synthesis. In general, the de-
signer will not understand the circuit organization gener-
ated by the synthesis tool and as such will not be able to
ascertain how circuit modules should be placed to reduce
area or length of interconnect. Moreover, each synthesis
run may result in a slightly different circuit structure that
renders the previous placement irrelevant thus forcing the

1This is not an argument for using only structural design tools for FP-
GAs. Rather it is an assertion that there is a place for the right kind of
structural design tools in any high-performance FPGA design tool kit.

designer to redo the manual placement each time the syn-
thesis tool is run.

Of course, one might argue that there is no need for
an additional structural design tool because VHDL can
be used to design structural circuits. It is possible to
use VHDL and associated synthesis tools to design struc-
tural circuits; structural VHDL descriptions can be passed
through the synthesis tool and the resulting circuit can then
be manually placed by the designer. However, it is obvi-
ously overkill to use an expensive synthesis tool simply for
netlist interchange, e.g., converting a VHDL netlist into an
EDIF netlist. It can also be counterproductive because us-
ing a synthesis tool for netlist conversion is slow and com-
plicated. Structural VHDL is also extremely verbose, mak-
ing it difficult to read and to maintain. Moreover, it can
be difficult to properly annotate VHDL to include manual
placement directives; VHDL was not designed to support
physical placement and as such all of the annotation ap-
proaches are non-standard and differ among synthesis tools
(if the synthesis tool supports it all). This forces the de-
signer to store manual placement information separately
from the design which causes additional errors and main-
tenance headaches.

4 Programmatic Structural Design

Although VHDL is generally a poor choice as a purely
structural design tool, it still demonstrates some important
strengths over conventional structural design tools such as
schematic capture. Because VHDL is a programming lan-
guage, it is possible to write VHDL programs that program-
matically generate circuit structures when the VHDL code
is enumerated. That is, rather than enumerate every gate
and wire in the form of a VHDL netlist, it is possible to
write a VHDL program that will generate the actual circuit
structure when it is enumerated. For example, in the case
of an 8-bit adder (assuming that a 1-bit adder is available),
rather than write the description of the circuit as an enumer-
ation of 8 interconnected adders, the designer writes a for-
generate loop that loops 8 times, instantiating an adder and
connecting with its neighboring adder on each pass of the
loop.

This mode of description is not only much more compact
and readable, but more importantly, is much more flexible
and powerful than conventional schematic capture. For ex-
ample, in the case of the adder, this programmatic approach
allows the size of the adder to be a variable that can be a pa-
rameter that is determined when the program is executed.
This one “adder program” can generate adders of any size
and is reusable by any VHDL code that wishes to build an
adder of some size. This programmatic approach to struc-
tural circuit generation is usually referred to as module gen-

eration and it is often used to create high-performance, pa-
rameterizable data-path elements such as adders, multipli-
ers, and more complex circuit modules. It can also be ap-
plied generally with good results to any structural design
problem.

General purpose languages versus VHDL

This programmatic approach to structural circuit design
can be applied even more effectively with general-purpose
languages such as C, C++, Java, etc. General-purpose lan-
guages have some surprising advantages over VHDL even
though VHDL was specifically designed as a language for
describing circuits. Consider the following advantages that
are provided by general-purpose programming languages:

❶ Richer Feature set. Simply put, most general-purpose
languages have feature sets that make them more pow-
erful, and easier to learn and use then VHDL. For ex-
ample, console I/O in general-purpose languages is
immediately available and can be used to print out
informative messages during program development.
This is especially handy when developing complex
module generators, for example. (Console I/O is pos-
sible with VHDL but it is painful to use and lim-
ited at best). Source-level debuggers for these lan-
guages are also much more comprehensive and easier
to use than their limited VHDL equivalents. All of the
tools for general-purpose programming languages are
cheap (often free) and are widely available, again, in
contrast with VHDL. Finally, the rich set of dynamic
data types in Java/C++ make it easier to develop com-
plex programs as opposed to VHDL. As an example,
we have found it relatively straightforward to manu-
ally convert MATLAB programs into standard Java,
use this code to perform fixed-point simulation studies
and automatically compare our results with the orig-
inal MATLAB output, and then complete the design
task by evolving the fixed point Java code into struc-
tural JHDL — all in the same programming environ-
ment.

❷ Simpler Syntax. The syntax of general-purpose lan-
guages such as Java is much simpler and more famil-
iar than that of VHDL. As such, a Java-based tool such
as JHDL is almost immediately accessible to a pro-
grammer who has experience with C, C++, or Java.
Even for those who are unfamiliar, the syntax is still
much easier to learn and unlike VHDL there is no
complicated simulation environment to become famil-
iar with. It has been our experience thus far that our
students are much more productive with JHDL than
VHDL when designing structural circuits. They also
learn Java/JHDL much more quickly.

❸ Opportunities for Codesign. Because the hardware
design language and the software design language
are the same, it opens opportunities for software-
hardware codesign that can significantly ease appli-
cation development. The entire application can be
described in Java (with JHDL libraries), including:
the actual circuit description, the run-time control, the
GUI (if there is one), any OS interactions such as file
I/O, internet communication, etc., and any other oper-
ations that need to be performed by a host workstation.
Using one description language to describe the entire
application greatly eases application development and
also provides additional opportunities for novel sys-
tem integration and debugging tools.

❹ Object-Oriented Flexibility. Object-oriented lan-
guages such as Java are well-suited for hardware
design. Circuits can be naturally described as objects
(as they are in JHDL) with class structure used to
control hierarchical organization. Inheritance leads
to better reuse of existing code and presents a natural
way to access libraries. Finally, inheritance provides
a natural way of manually partitioning classes into
software and hardware: hardware classes inherit
from special JHDL libraries that can be simulated
and netlisted. In practice, we have found the object-
oriented structure of Java to be a big win in both
development and debug.

In summary, general-purpose languages win out over
VHDL for programmatically generating circuit structure
primarily because they are more flexible, more widely
available, and easier to learn and use.

5 Why We Wrote JHDL

We were motivated by three primary issues. First,
we have several FPGA-based applications that can bene-
fit from the programmatic structural design approach pre-
sented above and no such tool currently exists that met our
needs. Second, based on past experience, we felt that there
were real advantages to using Java as the programming lan-
guage: productivity, portability, and specific Java language
features such as reflection and dynamic linking. Finally,
we felt that we had the opportunity and mandate to de-
velop a CAD tool that did exactly what we wanted it to.
We decided to take the initial version of JHDL and aug-
ment/modify/rewrite it2 until we were satisfied with it as
a tool for developing our current set of applications. We
started out by creating a library that supported the Xilinx

2JHDL in its current state is essentially a complete rewrite of the earlier
code.

4K series devices as it is the main device that we are using
in our applications3. This turned out to be only the first step
and many other significant changes were made to JHDL
over the last year to accommodate those using JHDL as a
design tool on Adaptive Computing Systems (ACS) appli-
cations found in the DARPA community. These changes
were made to make JHDL easier to use, more terse, faster,
and more general.

In its current state, JHDL is a complete structural design
environment, including debugging, netlisting and other de-
sign aids. Circuits are described by writing Java code that
programmatically builds the circuit via the JHDL libraries.
Once constructed, these circuits can be debugged and ver-
ified with the design browser, a circuit verification and de-
bugging tool. When the designer is satisfied with the func-
tionality of the circuit, an EDIF 2.0 net-list of the circuit can
be generated and this can be passed to various backends for
place and route (or just routing if the entire circuit has been
manually placed). JHDL currently supports Xilinx and HP
Chess [8] devices. The remainder of this paper will now
report on the current status of JHDL.

6 JHDL Design Strategy

JHDL is a structural design tool in which each circuit el-
ement is represented by a unique Java object. JHDL cir-
cuit objects inherit from core classes that set up the netlist
and simulation model. Circuits are created by calling the
constructor for the corresponding JHDL object and passing
Wire objects as constructor arguments to be connected to
the ports of the circuit. For example, a statement like new
and o(a, b, q) might create a new 2-input AND with a and
b as inputs and q as the output. We target a specific FPGA
technology by selecting the AND from the right library
of primitives (e.g. new byucc.jhdl.Xilinx.XC4000.and vs.
new byucc.jhdl.Altera.Flex10k.and). However, we found
that this style of design tends to be very tedious and ver-
bose in practice; therefore, the core structural design class,
Logic class, provides a quick-hardware API to build cir-
cuits efficiently. For example, we can design a 1-bit full-
adder as shown in Figure 1.

Note specifically how we build the adder logic with
method calls, not constructors (e.g. or3(and(a,b), ... co)).
These are methods inherited from the Logic class that call
the appropriate constructors for us (they do not evaluate a
logic function!). Each method returns the output wire for
the new gate, which allows us to nest these method calls,
as shown in the example. Building circuits with nested
method calls makes the code much less verbose than if

3At the time of the code rewrite, JHDL only supported the Xilinx 6200.
RIP.

public class FullAdder extends Logic {
/* Define the ports for a 1-bit full adder */
public static CellInterface cell˙interface[] = {

in(”a”, 1), in(”b”, 1), in(”cin”, 1),
out(”s”, 1), out(”co”, 1)
};

public FullAdder(Wire a, Wire b, Wire ci, Wire s, Wire co) {
/* Connect wires to my ports */
connect(‘‘a’’, a); connect(‘‘b’’, b); connect(‘‘ci’’, ci);
connect(‘‘s’’, s); connect(‘‘co’’, co);

/* Instantiate the logic functions */
or o(and(a,b), and(a,ci), and(b,ci), co); /* co is output */
xor o(a, b, ci, s); /* s is output */

/* Map the gates to LUTs, and place. */
map(a, b, ci, s); place(s, ‘‘R0C0.F’’);
map(a, b, ci, co); place(co, ‘‘R0C0.G’’);
}

Figure 1: JHDL Full Adder Example

we were explicitly creating every cell and every wire our-
selves. The code almost looks behavioral, and is quite easy
to read and understand. Furthermore, the circuit descrip-
tion is platform-independent, because we didn’t specify a
particular library from which to select the gates.

Targeting platform-specific primitive libraries

This suggests an important question: Now that JHDL
supports some level of device independence, how then do
I target my circuit for a particular platform? The answer is
the companion to Logic, which is the TechMapper class.
As illustrated in Figure 2, the Logic class uses a TechMap-
per to select gates from the library that is currently be-
ing targeted. For example, when the full-adder construc-
tor (see Figure 1) calls the xor o() method, Logic asks the
current system TechMapper to fetch an xor gate. If the cur-
rent TechMapper is a XC4000TechMapper, it will go to the
XC4000 library; similarly, a Flex10kTechMapper4 would
go to its corresponding library. In other words, for each
method available in Logic, the TechMapper decides what
the appropriate action is for its target technology. This is a
powerful approach that allows much of the tedium and ver-
bosity of structural design to be hidden inside an intelligent
TechMapper. Also, because the TechMapper is a JHDL
system-level property, the user can retarget an entire system
for a new platform (well, those parts that were created with
Logic methods) simply by changing the system TechMap-
per before constructing the circuit.

4Altera is not currently supported in JHDL.

Logic
User

Code
xor3

??xor3

Tech-

mapper

Logic XC4K

tech-

mapper

xor3

and2

or2

xor3

Altera

tech-

mapper

fdce

nor4

xor3

byucc.jhdl.Xilinx.XC4000

byucc.jhdl.Altera.flex10k

(a)

(b)

Figure 2: (a) The interaction between the Logic class
and the TechMapper. (b) The TechMapper object makes
platform-specific decisions on how to implement the logic
requested by the user.

Placement annotation

A crucial element in FPGA design is circuit placement
to attain desired levels of performance. In this regard JHDL
follows the approach of traditional schematic-capture tools.
Placement annotations are applied using string properties
and annotation symbols to be interpreted by back-end tools;
for example, with XC4000 technology we use FMAP sym-
bols and RLOC property strings to map gates into LUTs and
to place LUTs and flip-flops. For our full adder cell, we
might place the carry logic as shown in Figure 3, resulting
in the cell placement shown in Figure 4.

This placement approach can get pretty verbose, and re-
ally isn’t useful to us at the front end of the tool chain; typ-
ically, such placement annotations are not evaluated until
the design reaches the PAR stage. Again, the Logic class
helps to reduce this verbosity by providing a general API
for these two key placement functions: 1) mapping gates to
LUTs, ALUs or other atomic FPGA cells; and 2) setting rel-
ative placement of atomic FPGA cells. These are the map()
and place() methods shown at the end of the example full
adder code in figure 1, as repeated here:

map(a, b, ci, s); place(s, ‘‘R0C0.F’’);
map(a, b, ci, co); place(co, ‘‘R0C0.G’’);

Note that both styles of placement annotation are valid
in JHDL; the latter example is just an abbreviated form of
the annotation code in Figure 3. The map() method implies

/* FMAP needs 4 inputs, so just repeat ci */
fmap f = new fmap(a, b, ci, ci, s);

/* Place in position 0,0, in F-LUT */
f.addProperty(RLOC , ‘‘R0C0.F’’);

/* FMAP needs 4 inputs, so just repeat ci */
fmap g = new fmap(a, b, ci, ci, co);

/* Place in position 0,0, in G-LUT */
f.addProperty(RLOC , ‘‘R0C0.G’’);

Figure 3: JHDL Placement Annotations

mapping the network of gates between the input and out-
put wire parameters to an atomic cell; the place() method
implies setting the relative placement of the atomic cell.
Again, the exact interpretation of these method calls is left
to the TechMapper, which will determine the appropriate
action to take for the target technology.

Providing this placement API provides some important
advantages. First, it is somewhat less verbose than the fmap
f = new fmap... approach shown above. Second, it helps to
enforce a colored design methodology where circuit struc-
ture and circuit annotations are separated; it gives a com-
mon entry point for placement annotation, making the an-
notations more readable. But most importantly, it provides
a window of opportunity for the user to get design assis-
tance from the TechMapper. For example, when map() is
called, the XC4000TechMapper fully checks the network
of gates for validity (i.e. intermediate fan-in or fan-out to
the network). When the circuit is constructed, it will fully
resolve all placement hints and report any placement con-
flicts. This means that placement errors are detected at the
front of the tools chain, which helps us to design circuit ar-
chitecture and layout concurrently and therefore minimize
design cycles.

One final example is in order to demonstrate the power
of the Logic API-TechMapper approach. The 1-bit FullAd-
der cell shown in Figure 1 can be easily converted to an N-
bit ripple carry adder with minor modifications as shown in
Figure 5.

In this example, when we call xor o(), and(), and or() on
the N-bit wires, the XC4000TechMapper does what makes
sense - it instantiates N gates per method to implement a
bit-wise function. Most Logic methods automatically adapt
to the width of the Wire parameters that are passed in.
Similarly, when map() and place() are called on the N-bit
wires, the XC4000TechMapper infers N FMAP symbols,
one per bit, and iteratively places those FMAPs in a col-

a
s

co

(a)

a
b
ci

s

co

FMAP

FMAP

(b)

F

G

a
b
ci

s

co

R1C0

F

G

F

G

F

G

(c)

b
ci

R0C0

R1C1

R0C1

Figure 4: Examples of FPGA placement annotation:
(a) Full-adder logic (b) FMAP symbols demarcate LUT
boundaries (c) Placement annotation strings indicate rela-
tive placement of LUTs

public NBitAdder(Wire a, Wire b, Wire s) {
connect(‘‘a’’, a); connect(‘‘b’’, b); connect(‘‘s’’, s);

int width = a.getWidth();
/* Create the carry busses. Bit 0 cin is grounded, and the

cout bus is just a right-shifted version of the cin bus. */
Wire cin = new Wire(wire(width-1), gnd());
Wire cout = new Wire(nc(), cin.range(width-1, 1));

/* Because these wires are N bits each, each method
creates N gates */

xor o(a, b, cin, s);
or o(and(a,b), and(a,cin), and(b,cin), cout);

/* These instantiate 16 FMAPs, one per bit of the wires. */
map(a, b, cin, s); map(a, b, cin, cout);

/* This places the FMAPs in a column, starting at R0C0.
Placement iterates with (dx,dy) = (0,1) - bit 0 will
be in R0C0, bit 1 in R1C0, bit 2 in R2C0, ... */

place(s, 0, 1, ‘‘R0C0.F’’); place(co,0, 1, ‘‘R0C0.G’’);
}

Figure 5: Parameterizable Full Adder in JHDL

umn - specifically, s[0] is placed at R0C0.F, s[1] is placed at
R1C0.F, ... Thus, the TechMapper is able to provide many
intelligent design shortcuts to make structural design quick,
readable, and less verbose. In our example, we were able to
instantiate and hand-place an arbitrary-width adder in only
6 lines of structural code.

The FloorPlanner

The floor-planner is a visualization tool currently under
development that lets the user interactively place his de-
sign. The FloorPlanner allows platform-specific modules
to plug in to provide the graphics and platform-dependent
functions. When completed, the FloorPlanner will hierar-
chical placement views, a drag-and-drop interface, multiple
layouts per cell, and so forth. The prototype FloorPlanner
is shown in Figure 6.

In contrast to the static approach to annotation shown
in the previous section, the floor-planner annotations will
not be back-annotated to the source file; rather they will be
stored in separate annotations files. This will allow users
to have a single circuit description but with multiple lay-
outs that are simultaneously available. The netlister will be
able to incorporate these annotation files arbitrarily into its
netlists. Because both the FloorPlanner and the TechMap-
per operate on the top-level JHDL data structures, not an
intermediate file, they allow the user to do layout planning
in conjunction with circuit design.

Figure 6: Screen shot of the FloorPlanner.

The Primitive Libraries

JHDL primitive libraries currently exist for the Xilinx
XC4000 family. Virtex libraries are under development.
The behavioral models for these cells were derived from
the Xilinx libraries guide specifications in straightforward
fashion. As the libraries grew and JHDL changed during
development, we found it more and more difficult to main-
tain these libraries. Consequently, we created a pseudo-
Java language that is used to describe most of the library
cells. The language is just Java code that is marked up
with JHDL-specific macros. These macros specify the ba-
sic structure and behavior of the gate without using any spe-
cific Java/JHDL syntax. A Perl pre-compiler translates all
the macros into the JHDL syntax-du-jour, outputting com-
pilable Java. Then, when JHDL syntax changes for any rea-
son, we simply modify the pre-compiler output templates
and recompile the macro files for all the library cells. Using
this method, we have been able to track a moving JHDL tar-
get with an entire library, because we almost never have to
modify any of the macro files, only the pre-compiler itself.
The pre-compiler even generates basic comments and doc-
umentation files automatically (using JavaDoc). As an ex-
ample, Figure 7 illustrates how a simple macro called @in-
terface is translated into a more complex (and fully com-
mented) JHDL port interface block.

Note that all of the Java comments are in “JavaDoc” for-
mat that is automatically compiled into stand-alone HTML
class documentation.

RAM macro:

@class ram16x1s extends Memory {
@interface {

d : in(1);
we : in(1);
a : in(4);
o : out(1);
}

Pre-compiled JHDL output:

final public class ram16x1s extends Memory {
public static CellInterface cell˙interface[] = {

in(”d”, 1),
in(”we”, 1),
in(”a”, 4),
out(”o”, 1)
};
/** The netlist reference name for ram16x1s */
public static final String cellname = ‘‘ram16x1s’’;

Figure 7: Generating a RAM Library Primitive

The Net-lister

JHDL currently includes net-listers for EDIF 2.0 (used
with Xilinx M1 tools) and a proprietary HP net-list format
for Chess [8]. The EDIF netlister works in conjunction
with the TechMapper to include target-specific functional-
ity such as clock- and reset-net setup, I/O pad setup, etc.
The net-lister will also cooperate with the FloorPlanner to
incorporate placement annotation files from either the de-
fault location or from a local override file.

7 Debugging and Verifying JHDL Designs

Debugging and verifying a JHDL design is typically
done through the design browser. The browser allows the
user to dynamically load and unload JHDL designs, cy-
cle the global simulation clock, toggle the system reset,
and trace the values of wires in the design. The design
browser’s interface was developed with two major goals in
mind: to provide the user with tools to aid in the visualiza-
tion of a textual JHDL design and to provide tools to auto-
mate debugging tasks. While textual design tools are con-
venient for quickly creating circuits, it is often difficult to
identify structural errors in the system. For this reason the
ability to graphically visualize the structure of the design is
important.

The design browser addresses this need with two tools.
First, the tree view provides a hierarchical view of the de-

‘

Figure 8: The Design Browser

sign’s structure. Second, the schematic tool generates cir-
cuit diagrams of the design. In addition, the design browser
provides a command console for textual input, a memory
viewer, an object browser, and a means for directly con-
trolling the FPGA platform via the same user interface that
is used for simulation. All of the aforementioned design
browser functionality applies both to simulation and to the
actual execution of the design on an FPGA platform. For
example, during simulation, the wires values displayed in
either the tree view or annotated schematic view are re-
trieved from simulation models of the given wires. During
execution, the current state of the relevant FPGA devices
is retrieved via readback or some other means and the wire
value is updated based on these state values. This makes
the design browser equally effective as both a simulation
and an execution debugging tool. A screen snapshot of the
Design Browser is shown in Figure 8.

Tree View The tree view (upper left of figure) displays
the circuit hierarchy in a way similar to that used to display
file system hierarchies in computer systems. Cells in the
hierarchy are nodes (represented by icons). Like folders in
a file system, they can be ’opened’ to reveal lower levels
in the hierarchy. When a cell in the tree view is selected,
additional information is also displayed: the cell’s port and
wire names, their direction or type, their width, and their
current value. Figure 8 shows the tree view of the same full-
adder circuit generated from the Java code shown in Figure
1.

Schematic View The schematic generation tool (lower
right of figure) takes JHDL circuit descriptions and au-
tomatically generates a high-quality schematic similar to
[4, 7]. This process usually takes only a few seconds for
large designs. It has proven extremely useful in helping de-
signers recognize structural errors in their designs. The de-
signer can descend to the next lower level in the circuit hi-

erarchy by clicking the mouse within the boundaries of a
block of interest and the designer can view simulation re-
sults as the simulation proceeds — current values of all cir-
cuit nodes are displayed on the schematic and are updated
as they are computed. Further, a standard library of graph-
ics blocks exists, enabling the schematic viewer to repre-
sent each block with the most suitable symbol (gates for
logic functions, etc). A Java interface is also provided for
users to specify graphics to be used for displaying a given
cell in the schematic window. To do so the user embeds a
stylized draw() method in the definition of his cell5.

Object Browser The object browser (lower left of fig-
ure) takes advantage of the reflection features available in
Java to allow the user to view and manipulate public fea-
tures of circuit modules in the design. These features in-
clude ports, wires, and any public fields or methods. Using
the browser the user can modify the value of any native-
typed field (int, short, long, boolean, String). More impor-
tantly, the user can invoke any public method which takes
only native-typed arguments. Thus, the user can change
field values at run time or call methods which, in turn, can
provide specialized debug information. This last feature al-
lows the designer to extend the run-time debug environ-
ment by providing cell-specific routines in the design of
their cells. As an example, such a routine could be used to
provide details on the internal state of a complex pipelined
circuit element in a compact and understandable way with-
out requiring the user navigate into its gate-level internals
in the schematic browser.

Waveform Viewer The design browser provides a wave-
form viewer (upper right of figure) to display signal values
as waveforms or in a table. Multi-bit values can be viewed
in one of several different radices and the window can be
panned and zoomed as would be expected.

Command Console All browser actions, normally ac-
cessed using the mouse/buttons/menus, have textual equiv-
alents which can be typed into the command console or read
in from a file. Both commands generated in the GUI and
those entered at the console pass through a common com-
mand interpreter and are also logged in a command history
file. The command interpreter can then source this history
file or any other command file, thus helping to automate
many common debugging tasks. The design hierarchy can
also be navigated and browsed using console commands
such as cd and ls.

5It is stylized because it need only specify the lines, arcs, and text
which make up the module when viewed full-size. The schematic gen-
erator transparently handles all needed scaling and windowing.

Memory View Interface The memory view interface
(not shown) grew out of the need of designers to be able
to examine the contents of memory components in designs
during simulation. Any cell which implements the meth-
ods defined in the memory view interface can be examined
using the memory viewer. Using the memory viewer the
user can not only view contents of design memories at run
time, he can modify them, load them from files, or dump
their contents to files.

Hardware Control A final use of the design browser is
to directly control the execution of an application on an
FPGA platform, e.g., WildForce, through the same user in-
terfaces that are used to control the simulator. To do so,
the design browser communicates with the FPGA platform
through a control API that provides generic methods that
invoke platform-specific driver functions that perform run-
time operations such as setting the clock frequency, step-
ping the clock, loading a configuration, etc.

WildForce Platform Support

JHDL currently provides simulation and hardware sup-
port for the Annapolis Microsystems WildForce platform.
The simulation and development environments leverage
the basic JHDL functionality, while the runtime environ-
ment utilizes the hardware control interface supplied by the
design browser and a native library (via Java Native Inter-
face (JNI)) to access the actual Wildforce hardware.

The JHDL models are powerful and easy to use. Cre-
ating a design for the wildforce environment is identical to
creating any other JHDL design with two exceptions: First,
the user must extend the class pelca, instead of the usual
classes. Second, since this pelca class provides a set of
method calls to access the physical ports of the PE, user
calls to port() can take advantage of those methods to sim-
plify the process.

An example is shown in Figure 9. This simple design in-
stances the adder circuit which has been shown in previous
examples. It takes one 16-bit input from the lowest-order
16 bits of the left systolic bus, and takes the second input
from bits 31 down to 16 of the same bus. The sum of these
two numbers is then output to the lowest 16 bits of the right
systolic bus of WildForce.

As can be seen from the above code segment, using a
high level language makes it possible to hide much of the
detail of the interface logic from the user. When using the
VHDL libraries supplied with WildForce, for example, the
user must supply an enable bit for each signal which has
the possibility of being bi-directional. The JHDL Wild-
force model, however, will automatically instance the cor-
rect type of pad for each signal tied to a PE pin and will

import byucc.jhdl.platforms.WildForce.*
import byucc.jhdl.base.*

public class adder extends pelca {

public static CellInterface cell˙interface[] = {
in(”a”, 16),
in(”b”, 16),
out(”sum”, 16)
};

public adder(pe parent) {
super(parent);

// LeftReg() and RightReg() are methods which will return
// the requested wires from the Wildforce environment.
// This frees the designer from having to understand the
// higher-level Wildforce models and wiring details and
// makes it simple to drop a design into a Wildforce PE.
Wire a = connect(”a”, LeftReg(15, 0));
Wire b = connect(”b”, LeftReg(31, 16));
Wire sum = connect(”sum”, RightReg(15, 0));

new NBitAdder(this, a, b, sum);
}
}

Figure 9: The NBitAdder in the WildForce Environment

require an enable bit only if that signal is actually used as a
bidirectional signal.

Another advantage of the JHDL Wildforce model is that
each control signal in the processing element has a default
state to which it will be set if the user does not explicitly
use that signal. The value to which each unused signal de-
faults is signal dependent and is automatically handled by
the JHDL Wildforce model. As a result, the full adder ex-
ample shown in Figure 9 requires 15 lines; achieving the
same functionality in VHDL requires over 45 lines. The ex-
tra lines in VHDL are required mainly to tie unused control
signals to their deasserted states.

Finally, to facilitate simulation and hardware debug, the
Wildforce model supplies a configuration utility as shown
in Figure 10. This module is automatically started by the
design browser whenever the Wildforce model is loaded
and allows the user to load designs into the FPGAs, memo-
ries and FIFOs. This is done by selecting the component of
interest and typing the desired file/class name into the text
box.

It can be seen in Figure 10 that PE1 has been loaded
with the class NBitAdder and the crossbar has been loaded
with the configuration file xbar.cfg. PE2 is currently se-
lected and about to be loaded with the class accumulator.

Figure 10: WildForce Configuration Utility

As shown, the system is currently set to hardware mode
as denoted by the check box. This check box can be used
to toggle the system between hardware mode and simula-
tion — by simply changing the mode, the user can simu-
late and netlist the design or execute the design on the actual
hardware. In either case the built-in features of the browser
can then be used to inspect the contents of memory and the
values of user defined signals in a PE. As with the other
browser modules, all commands available in the configura-
tion utility are also available from the design browser con-
sole, simplifying the creation of scripts for automated exe-
cution.

8 Applications

Our work on the DARPA-funded SLAAC project has
driven much of the applications work done using JHDL
to date. This application work is in two areas: automatic
target recognition (ATR) and sonar beamforming. To fa-
cilitate the completion of these designs we have created a
set of module generators including: fixed-point multipliers,
CORDIC units, comparators, adders/subtractors, counters,
finite state machines, RAM and ROM blocks, and delay
lines. Most are parameterized for operand width and level
of pipelining and are similar in a number of ways to those
described in [3, 9].

The first major JHDL designs using these are now near-
ing completion for the Wildforce platform. The first, an
ATR design, is a regular bit-level pipelined circuit which
efficiently implements programs written in the morpholog-
ical language CYTO. The second, for matched field sonar

beamforming, is less regular and is representative of many
typical DSP designs. It consists of multiple state machines
and datapaths, each containing a number of multiplier-
accumulators and CORDIC rotators. Our experience on
these projects is that the availability of such a set of mod-
ule generators greatly eases the design task, making it much
simpler to achieve high density, high performance designs.

Related Work Many programmatic approaches for gen-
erating hardware have been described in the literature —
both for VLSI- and FPGA-based systems. The following
will discuss only FPGA-related work. PamDC [2, 10] was
one of the first FPGA-related tools to be based on a gen-
eral purpose language (C++) that programmatically gen-
erated circuits. It was developed for use with DecPerle-1
and was used successfully on a large set of applications.
The SPYDER work described in [6] uses extended C++
to generate processor configurations for a custom reconfig-
urable VLIW coprocessor. The C++ extensions were cho-
sen to ensure that the resulting designs could be simulated
using conventional C++ compilers. Transmogrifier C [5] is
a C-based FPGA compiler. It handles many C control con-
structs and does LUT packing and sharing to minimize the
size of the resulting circuit. Pam-BLOX [9] is a module
generator library which works in conjunction with PamDC
and includes generators for multiplication, CORDIC, coun-
ters, etc. Pam-BLOX modules contain placement informa-
tion to ensure compact designs. Reference [3] describes a
Java-based circuit-generator framework for FPGA’s which
provides much more than basic circuit generation. It was
designed to be embedded in larger design systems and also
provides support to easily retarget new devices, support for
simulation and verification, and support for partial evalua-
tion to reduce the size of generated designs when operand
values are known at compile-time.

JHDL probably has more in common with PamDC than
with the other listed efforts. The basic approach used by
the Logic class to describe circuits is similar to that used in
PamDC. However, through the technology-mapping class,
JHDL provides a level of automation (see the adder exam-
ple) and device independence not provided by PamDC. The
debugging and verification tools associated with JHDL also
provide additional functionality (graphical circuit browser,
schematic view generator). JHDL also handles wires in a
more general and convenient manner. However, JHDL dif-
fers from PamDC and all the other efforts on a more funda-
mental level as it provides a unified simulation/execution
environment that allows users to access simulation of an
application and execution of that application on an FPGA
platform from the same unified tool, the design browser
(this can also be accomplished by a user-written Java pro-
gram if desired). Moreover, JHDL also allows the complete

application, including the GUI, run-time control code and
the circuit design to be captured using a single language
(Java) and within a single program.

9 Concluding Remarks

Overall, the JHDL experiment has been a very positive
experience. Thus far, we have been successful in using
JHDL to develop large applications as noted above. Al-
though only a simple full-adder design was used for illus-
trative purposes, all of the JHDL software is being used to
develop much larger, computationally-challenging designs
that consist of multiple Xilinx XC4085s, each connected to
several memories. Although no CAD tool is ever perfect,
we have noted substantial productivity gains from our stu-
dents as they have become experienced JHDL users.

In our laboratory, the student users of JHDL range from
the complete novice who has not even heard of VHDL,
to the experienced VHDL/Synopsys user. The novices
have become productive quickly in JHDL (much more
quickly than when learning VHDL) and the experienced
users really enjoy the ease of use and flexibility that comes
from using a general-purpose programming language. To
our knowledge, none of our experienced designers has re-
quested to go back to VHDL synthesis.

In spite of early reservations, Java has turned out to be
a very good language to base JHDL on. The only other
choice was C++ (an object-oriented language was a re-
quirement) and after selecting Java, it has been generally
noticed that programs get written and debugged faster and
the resulting programs tend to have fewer bugs (primarily,
due to simplicity and Java’s garbage collection) than when
students work in C++.

Portability has also been unexpected bonus. JHDL has
been tested on all of the standard 1.1.x Java distributions
with no problems. Indeed, parts of JHDL were developed
on a wide variety of machines including: NT and Windows
boxes, Linux boxes, Macintosh, and HP Unix boxes. In
most cases, the code has simply worked as we have moved
from platform to platform. Such portability is proving to
be a real advantage. Students can take the software home
and run it on whatever machine they have at their disposal.
More importantly, it is making it much easier to distribute
JHDL widely in this research community.

We have used JavaDoc extensively to document all of
the primitive libraries, as well as the Logic and TechMap-
per classes. In addition, libraries of complex module gener-
ators are also described using the embedded comments and
the JavaDoc utility.

The primary downside of JHDL has been performance.
It has not been a significant problem thus far, even on large

designs, however simulation speed remains the bottleneck
for large designs. Of course, this tends to be the case no
matter what tool you use. As a matter of course, we reg-
ularly profile various parts of JHDL to see where it can be
sped up; however, we have found that the profiling tools for
Java are not as mature nor are they as easy to use those used
with C or C++, for example.

In retrospect, if the choice of which programming lan-
guage to use were made today, we would still choose Java
but not only because of the increased productivity. Java
has some unique features such as reflection which provide
an easy to use dynamic linking feature that we exploited to
create the design browser and to allow the user to extend
the run-time environment. In addition, Java provides ex-
cellent facilities for GUI development (AWT, Swing, etc.)
and these have also made it easy to develop the user in-
terfaces for the design browser, etc. Being able to com-
bine the user interface with the circuit description is a pow-
erful capability that we are just beginning to experiment
with. Additional information regarding JHDL can be found
at jhdl.ee.byu.edu.

10 Future Work

JHDL will continue to undergo development. In the fu-
ture, we plan to investigate the following areas in conjunc-
tion with JHDL:

➳ additional debugging capability including synthesis of
debug circuitry to monitor the executing hardware,

➳ interactive floorplanning to make manual placement
more intuitive and easier to verify,

➳ support for additional devices such as Altera and sys-
tems such as DEC Pamette,

➳ state-machine synthesis to make it easier to develop
controllers,

➳ behavioral synthesis,

➳ and, additional interfaces to allow interoperation with
other CAD tools.

11 Acknowledgments

The authors would like to thank the many students at
BYU who helped on the JHDL project: Russ Fredrickson,
Tim Wheeler, Clark Taylor, Matt Severson, Brett Williams,
Jeremy Anderson, Nathan Hill, Carl Worth, Mark Ander-
son and Paul Graham. Also thanks to Mark Shand and Jean
Vuillemin for some enlightening discussions on FPGA de-
sign.

12 References

[1] P. Bellows and B. L. Hutchings. JHDL - an HDL for
reconfigurable systems. In J. M. Arnold and K. L.
Pocek, editors, Proceedings of IEEE Workshop on
FPGAs for Custom Computing Machines, pages 175–
184, Napa, CA, April 1998.

[2] P. Bertin and H. Touati. PAM programming environ-
ments: Practice and experience. In D. A. Buell and
K. L. Pocek, editors, Proceedings of IEEE Workshop
on FPGAs for Custom Computing Machines, pages
133–138, Napa, CA, April 1994.

[3] M. Chu, N. Weaver, K. Sulimma, A. DeHon, and
J. Wawrzynek. Object oriented circuit-generators in
java. In K. L. Pocek and J. Arnold, editors, Proceed-
ings of IEEE Workshop on FPGAs for Custom Com-
puting Machings, pages 158–166, Napa, CA, April
1998.

[4] A. Kumar et al. Automatic generation of digital sys-
tem schematic diagrams. IEEE Design & Test of Com-
puters, 3(1):58–65, February 1986.

[5] D. Galloway. The transmogrifier C hardware descrip-
tion language and compiler for FPGAs. In D. A. Buell
and K. L. Pocek, editors, Proceedings of IEEE Work-
shop on FPGAs for Custom Computing Machines,
pages 136–144, Napa, CA, April 1995.

[6] C. Iseli and E. Sanchez. A C++ compiler for FPGA
custom execution units synthesis. In D. A. Buell and
K. L. Pocek, editors, Proceedings of IEEE Workshop
on FPGAs for Custom Computing Machines, pages
173–179, Napa, CA, April 1995.

[7] C. Lageweg. Designing an automatic schematic gen-
erator for a netlist description. Master’s thesis, Delft
University of Technology, 1998.

[8] A. Marshall, J. Vuillemin, T. Stansfield, Igor
Kostarnov, and B. L. Hutchings. A reconfigurable
arithmetic array for multimedia applications. In
ACM/SIGDA International Symposium on Field Pro-
grammable Gate Arrays, Monterey, CA, February
1999. to appear.

[9] O. Mencer, M. Morf, and M. Flynn. Pam-blox: High
performance fpga design for adaptive computing. In
K. L. Pocek and J. Arnold, editors, Proceedings of
IEEE Workshop on FPGAs for Custom Computing
Machings, pages 167–174, Napa, CA, April 1998.

[10] J. Vuillemin, P. Bertin, D. Roncin, M. Shand,
H. Touati, and P. Boucard. Programmable active

memories: Reconfigurable systems come of age.
IEEE Transactions on VLSI Systems, 4(1):56–69,
1996.

